Intensifying and Integrating Cattle Production Systems - Juniper Publishers

    

                     Journal of Dairy & Veterinary Sciences - Juniper Publishers


Abstract

Reducing the environmental impact of cattle production is best achieved by increasing production efficiency, followed by processing and distribution. Integrated and intensified systems of beef and dairy farms offer both a high productivity and high profitability model that is best suitable for commercial commodity systems and also for small farmers. This approach to environmental assessment is necessary to avoid the risk of suboptimal solutions, as the two systems are highly interrelated.

Keywords: Food; Global; Impact; Livestock; Sustainability

Introduction

Food is an important aspect of daily human life. Palates link cultures and landscapes, but also have implications for human and environmental health [1]. The various stages of food production, transportation, and consumption have an impact on the environment, as does any other activities in which humans consume resources. In the food production phase, meat and dairy products generate environmental burdens globally and locally [2]. In fact, they release more carbon emissions compared to other foods [3,4].

Local food networks are spreading worldwide and are considered a sustainable food system, although their contribution to greenhouse gas emissions is currently not well understood [5]. Despite this, local production does not always mean lower emission of greenhouse gases. The meaning of “local” should be explained in terms of the link between a community tradition and a geographical area rather than in terms of food miles [6] as the choice of local products or “food miles” is not sufficient to ensure ecologically sustainable food consumption [5,6]. The mode of transport is as important as the distance, with sourcing from close geographical areas resulting in emissions greater than those from farther geographical areas [7,8].

However, transportation is not the only factor that determines how environmental efficient it is to consume local food. Overall, the consumption of local food adapted to the local environment and the use of eco-technologies is certainly a encouraging factor in improving environmental health and sustainability [8]. Reducing food waste can also contribute positively towards multiple sustainable development goals [9]. Gaps in private and public regulations must be reduced to allow for restructuring of distribution channels to provide consumers with local quality beef and dairy products that also come from environmentally friendly practices [10-12]. But a more sophisticated and comprehensive global modeling is needed to understand the global impact of local regulatory changes, as illustrated by the complexity of production and trade responses to changing environmental regulations [12]. The standard narrative that preserving forests and reducing CO2 emissions is simply too costly to be feasible is outdated [13]. Quantifying energy demand in food production and distribution is key to identifying intensive activities and provides useful information for policy and industry decision makers [14]. The most important factor in reducing the environmental impact of cattle production is increasing production efficiency, followed by processing and distribution [15].

The sustainable production of milk and beef to feed a growing world population has been the subject of critical debate in recent years. To remain sustainable, a production system must make incremental efficiency improvements at the individual farm level that keep farms economically and environmentally viable [16]. It means also that dual purpose systems can advantageous over specialized dairy systems [17]. Increased efficiency can not only decrease the negative environmental impact of cattle production, but also reduce costs to the producer [15].

High nutrient, resource and food production efficiency in dairy farming can be promoted by a more extensive grass land based management system with low concentrate use [18]. The intensification of grazing and the introduction of more productive forage species can represent new opportunities for adding value, improving the quality of life and conserving sensitive areas found in different environments [19]. Pasture-based livestock production systems with larger ecological, water and carbon footprints show better results on indicators related to human health and environmental protection [19]. However, it must be pointed out that intensification is not the same as industrialization. Intensification refers to an increase in production per unit of input, while industrialization is a particular type of intensification of production characterized by large-scale, high-throughput facilities in which animals are fed controlled feed in enclosed barns [20].

The current intensification of dairy farming systems using significant amounts of human edible crops threatens global food security, has undesirable side effects on the environment and fails to exploit the evolutionary advantage of ruminants [2,18]. Dairy intensification may spare or directly afforest grassland, but may not fully offset emissions caused via indirect land use change and replacement beef production [2,10]. Therefore, environmental efficiency of cattle production systems underscores the need to consider both dairy and beef production and the multiple interrelated environmental burdens in both production systems when designing strategies for sustainable intensification [21]. This integrated approach to environmental assessment is necessary to avoid the risk of suboptimal solutions, as the two systems are highly interrelated [15,17]. Within the range of sustainable agricultural innovations available, integrated systems offer both a high productivity and high profitability model that is particularly scalable due to its suitability for commercial commodity systems [22]. For instance, sugarcane ethanol and beef cattle integration is made technically feasible due to the nutritional value of sugarcane, increasing ethanol production without compromising cattle production or displacing pasture land [23]. Other strategies may include integration to silvopastoral [24] and aquaponics [25] systems. Of the many ways to mitigate climate change, regenerative agriculture - controlled grazing, woodland grazing [26], intercropping, conservation agriculture and farmland restoration - collectively top the list when it comes to sequestering greenhouse gases [1]. By implementing strategies in a coordinated effort between public and private agents, deforestation may be slowed down while efficiency is increased [13]. Indeed, in different regions of the world, intensification and/or integration of beef and dairy production systems are important strategies to significantly reduce environmental impacts and promote healthy economic growth [27,28].

Conclusion

Policy approaches must better account for synergies and trade-offs among the multiple dimensions of livestock impacts.

Quality technical assistance to smallholder farmers could help them better meet their production practices to local opportunities, increase household incomes and improve livelihoods, and reduce deforestation pressures. This would require the education of farmers, retailers, consumers and policy makers, as well as a careful assessment of the benefit-cost ratio of integration and intensification of cattle production systems.

To Know More About  Journal of Dairy & Veterinary sciences

Please click on: https://juniperpublishers.com/jdvs/index.php

For more Open Access Journals in Juniper Publishers

please click on: https://juniperpublishers.com/index.php



Comments

Popular posts from this blog

The Ethogram: Quantifying the Behavioral Picture and Justifying the Severity of Diseases-Juniper Publishers

Histopathology in Bovine Rotavirus (Type A) Infected Calves and Its Confirmation by ELISA and RT-PCR-Juniper Publishers

Ocimum Sanctum, as Growth Promoter in Poultry-Juniper Publishers